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We present an irreversible-deposition model which encompasses as special cases both random sequen-
tial adsorption (RSA) and simple ballistic deposition (BD). In this deposition process, hard spheres are
added sequentially to a plane along vertical straight-line trajectories initiated at random positions. Mul-
tilayer formation is prevented. The spheres can adsorb on the plane either by direct deposition or by fol-
lowing the path of steepest descent on previously deposited particles. The ratio of the rates of the two
mechanisms is characterized by a parameter which is equal to O for RSA and 1 for simple BD. Using
liquid-state methods, we obtain a third-order density expansion for the pair-density function and for the
rate of deposition. We consider also the kinetics of the process and we show, by computer simulation
and theoretical arguments, that the system reaches its saturation state exponentially. Finally, we discuss
several interpolation formulas that incorporate the exact small- and large-time behavior.

PACS number(s): 81.15.Lm

I. INTRODUCTION

Models of irreversible deposition in monolayers have
attracted significant theoretical effort and are useful in
the interpretation of experimental studies such as the ad-
sorption of large molecules on solid surfaces [1-6]. Col-
loidal and biological particles, like proteins, bacteria, and
viruses, adsorb at liquid-solid interfaces with negligible
desorption and surface diffusion on the time scale of ob-
servation. A well-known example of an irreversible
monolayer deposition process is the random sequential
adsorption (RSA) [7]. In the prototypical version of this
model, hard objects are deposited sequentially on a sur-
face. Their positions are chosen at random, and each
particle excludes a certain area from additional particles.
Although RSA takes into account geometrical exclusion
effects and the irreversible nature of the process, the sys-
tematic rejection of those particles that overlap with pre-
viously adsorbed particles appears to be a strong limita-
tion of the model.

A quantitative description of the adsorption mecha-
nism must include the transport of the particles from
bulk to the surface. This requires knowledge of the
different interactions involved in the process which may
include dispersion, electrostatic, hydrodynamic forces,
and possibly external fields, such as gravity, in addition to
the short-range repulsion. An interesting approach that
incorporates some features of the transport mechanism
consists of allowing the particles to undergo a Brownian
motion in solution under the influence of these forces.

If the density of the adsorbing particles is approximate-
ly equal to that of the solvent, gravity forces can be
neglected and a pure diffusional motion can be con-
sidered; this corresponds to the diffusion RSA (DRSA)
model introduced by Schaaf, Johner, and Talbot [8].
From a simulation study of the (2+ 1)-dimensional sys-
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tem, Senger et al. [9-11] pointed out that the kinetics of
the DRSA are significantly different from those of the
RSA but that the coverage and the monolayer structure
at saturation are extremely close to those obtained by the
RSA model. Tarjus and Viot [12] showed that a large
class of generalized car parking problems have the same
jamming limit as the simple parking [or one-dimensional
(1D) RSA] model, and that the (1+ 1)-dimensional DRSA
process can be well approximated by a generalized park-
ing process.

Conversely, if the adsorbing particles are denser than
the solvent, the motion of the particle is dominated by a
significant drift toward the surface due to the gravitation-
al force [13]. In the limit of a very large density
difference the motion of the heavy particles can be de-
scribed by straight-line trajectories in solution and near
the absorbing surface by the path of steepest descent on
the previously adsorbed particles. Talbot and Ricci [14]
obtained an analytical solution of a (1+ 1)-dimensional
version of this ballistic deposition model in which multi-
layer formation is not allowed. Jullien and Meakin [15],
Thompson and Glandt [16], and Choi et al. [17] investi-
gated the same model in (2+1) dimensions by computer
simulation. A comparison between RSA and ballistic-
deposition (BD) models reveals that BD saturation cover-
age is larger than RSA saturation coverage, and that the
saturation state is reached faster in the BD model (ex-
ponential instead of algebraic time behavior); finally, the
cooperative restructuring effects, which represent the
possibility for a trial sphere to move over one or more
neighboring preadsorbed spheres in order to reach the
plane, contribute to the formation of connected clusters.

In this paper, we study a modified (2+ 1)-dimensional
ballistic-deposition model, which encompasses RSA and
BD as special cases. This model, corresponding to
sequential deposition of hard spheres of diameter o (o is
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chosen as unit length in the following) onto an infinite ad-
sorbing plane, is defined as follows. Starting from an ar-
bitrary horizontal plane above the adsorbing plane, the
spheres, which are randomly positioned, are dropped at a
rate k and follow vertical trajectories until they reach (i)
the adsorbing plane or (ii) a preadsorbed sphere. In case
(i), the trial sphere is placed definitively with a probability
p or removed with a probability (1—p). In case (ii), the
trial sphere follows the path of steepest descent on the
previously adsorbed particles: if the particle is trapped in
a stable position without contacting the adsorbing plane,
it is removed (no multilayer formation); otherwise, the
particle reaches the plane, and it is clamped with a proba-
bility p’ or is rejected with a probability (1—p'). With
the introduction of the dimensionless variables ¢t =kpr,
where 7 is the number of attempts per unit area, and
a=p'/p, the kinetics of the process is governed by the
evolution equation

ag(gzt,t) —

where ®(a,p) is the rate of deposition on the surface for a
new sphere when the density of adsorbed spheres is equal
to p=p(a,t).

The tuning parameter a controls the efficiency of the
restructuring. The switch-off of this parameter corre-
sponds to the RSA model, whereas for a =1 one recovers
the simple BD model. For 0<a <1, this model mimics
the physical situations in which adsorption is partially
influenced by gravity: a increases with increasing density
difference between the particle and solution. For very
large values of a, the model describes island or grain
growth [7]. In this case, the value of @ controls the ratio
of grain growth to the seeding of new grains. In all cases,
an increasing of the tuning parameter a leads to more
efficient space filling and significant changes of the struc-
ture. Kinetics and cluster densities have been obtained
for the (1+ 1)-dimensional version of this model (deposi-
tion of disks on a line) [18]. As for RSA processes, no
analytical solution can be found over the entire coverage
range in higher dimensions, but using liquid-state
methods [16,19,20], we derive in Sec. II the third-order
density expansion of the rate of deposition and of the pair
density function for the (2+ 1)-dimensional process. In
Sec. III, we show that the asymptotic approach of the
coverage towards the saturation state (jamming limit) is
exponential for a >0, and we study the crossover between

power-law and exponential behavior at small values of a.
J

a,p), (1

A numerical investigation of this model is presented in
Sec. IV, and the data from simulation are compared to
the results of the previous sections. Finally, several ap-
proximate interpolation formulas that incorporate the ex-
act small- and large-time behavior are discussed.

II. LOW-DENSITY EXPANSION

The density of adsorbed spheres increases monotoni-
cally with time due to the two possibilities to add a new
sphere, either by direct deposition (DD) or by the rolling
mechanism (RM). Thus, the rate of deposition ®(a,p)
can be expressed formally as

®(a,p)=® P(a,p)+ad®*M(a,p) , )

where ®PP(a,p) and ®*M(a,p) are the probability for a
new particle to reach the surface by direct deposition or
by rolling mechanism, respectively. <I>DD(a,p) and
®RM(g,p) depend on the configuration of already ad-
sorbed spheres when their density is equal to p. This
configuration can be considered as an arrangement of
two-dimensional (2D) disks of diameter o0 =1 and the
(2+1)-dimensional process can be reduced to a 2D pro-
cess with restructuring. Then, as in RSA, CDDD(a,p) can
be interpreted as the fraction of the total surface that is
accessible to the center of a new particle without overlap
with preadsorbed spheres. Moreover, because of the
macroscopic uniformity of the system, ®*™(a,p) is also
the complementary fraction of the sum of the relative
area available for direct deposition and that available for
second layer formation; it can be written as

O’M(q,p)=1—®PP(a,p)—V¥(a,p) , (3)

where W(a,p) denotes the relative area of the region in
which a trial particle can be trapped in an elevated posi-
tion without reaching the adsorbing surface and could
then participate, if it were not prevented, in the forma-
tion of a second layer. Using Egs. (2) and (3), the rate of
deposition is then given by

®(a,p)=(1—a)® P(a,p)+a(1—¥(a,p)) . 4)

Also, because of the macroscopic uniformity of the
monolayer, ®°P(a,p) represents the probability that
around any point r;, there is a disk of diameter 20 that is
free from any center of previously adsorbed spheres, and
this leads to the following expression [19]:

®°(q,p)= 3 B[ Ja2dstDf e fieeng (2 s+ 1)a,p)
s=0"°"

@ S 1
=S§0%f - [d2---ds+1) Efdlfu o frsen |82 (s 1)a,p) (5)
where S is the total surface area, f denotes a Mayer function for hard disks, and g.(2,3,...,(s+1);a,p) is the s-

particle distribution function.

Using geometrical and probabilistic arguments, one can obtain a formal expression for ¥(a,p):

\y(a,p)=§ f—,f - [d2d3---ds+1DAQ2,3, ..., (s+1))g,(2,3,...,(s+1)a,p), (6)

s=3
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where A4(2,3,...,(s+1)) denotes the area of the po-
lygon that has 2, 3,...,(s+1) for vertices and is such
that any center of particle falling in it reaches a unique
elevated position above the surface. By convention, A is
zero when no stable elevated position is found.

We now investigate the short-time kinetics and the
low-density structure by calculating the density expan-
sion of the pair-distribution function g,(1,2;a,p) and that
of the rate of deposition ®(a,p). The kinetic equations,
(1) and (2), can be generalized for higher-order distribu-
tion functions, by applying arguments similar to those in-
troduced by Tarjus, Schaaf, and Talbot [19] for RSA.
For example, p’g,(1,2;a,p)d 1d2 is equal to the probabil-
ity that the centers of two (unlabeled) particles are locat-
ed in dr, and dr, around r; and r,, respectively. Between
times ¢ and ¢ +dt, new pairs can appear by the insertion
of a sphere at the point r,, given that a preadsorbed
sphere is at the point r;, or by the insertion of a sphere at
the point r,;, given that a preadsorbed sphere is at the
point r,. The time evolution of the pair-distribution
function is then

3p’g,(1,2;a,p)

Y =[®'%(1,2;a,p)+®¥(1,2;a,p)], D

J

) s+1

@!2PD)(1 2.4 o)=(1+f,,) S B;—f fd3 ..
s=0 :

However, in contrast to RSA processes, cooperative re-
structuring effects related to the rolling mechanism lead
to nonlocal multiparticle effects, and no simple generic
expression has been obtained for @ H2ARM)( 1,2;a,p). It is
possible to obtain the first terms of the expansion by a
systematic analysis of all events that lead to a successful
adsorption. At the lowest order, a trial particle can be in-
serted at the location r, by rolling on the particle cen-
tered in r, alone. At the next order, a trial particle can be
inserted at r,, either by rolling on the particle r, without
contacting particle 3 or by rolling on particles in r; and r;
(see Fig. 1). Consequently, the pair-distribution function
has a regular and singular part,

8,(ry;a,p)=y,(ry;a,p)H(r;,—1)
+g2+(a;p)8(r12—‘1) > (11)

where H denotes a Heaviside step function. To obtain
more tractable expressions, Eq. (9) can be also separated
as follows:

%{pzyz(ru;a,p)}= [®PP)(1,2;a,p)

P(a,p)
+®RM(1,2;0,p)], (12)
9 2 -2 (RM)
ap{pg”(a,p)} q,(a,p)du (a,p), (13)

where ®*M)(1,2;4,p) and ®RM)(a,p) denote, respective-
ly, the regular and singular parts of ®®M)(1,2;a,p); we

"d(st2)f 13 fis+08+1(2,3, ...
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where @'/ 1,2;a,p) represents the probability density of
finding a particle centered at r; and a cavity centered at
r, such that one particle center can be placed at r, either
by direct deposition or by rolling mechanism,

®'2(1,2;a,p)=0'2PP)(1,2;4,p)

+@IRM)(1 2.4 p) . (8)

Because the density is a monotonically increasing func-
tion of time, there is a one-to-one mapping between ¢ in
the range [0,+ «[ and p in the range [0,p(+ o )[; the
time dependence of the equation (7) can be eliminated,
yielding

dp’g,(1,2;a,p)

=[®'"(1,2;a,
3 [®''%(1,2;a,p)

+@2(1,2;a,p)]

. 9
®(a,p) ©

Using the derivation of Ref. [19], &!/2PP)( 1,2;a,p) takes
the form

,s+2;a,p) . (10)

(@) (b)

(c) (d)

FIG. 1. Illustration of the four possibilities to insert particle
2 in the vicinity of two preadsorbed particles, 1 and 3: (a) parti-
cle 2 does not contact 1 and 3, (b) particle 2 contacts 1 but not 3,
(c) particle 2 contacts particle 3 but not particle 1, (d) particle 2
contacts both particles 1 and 3; (a) corresponds to a direct depo-
sition and (b), (c), and (d) to the various possibilities involving
the rolling mechanism.
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have dropped from ®PP’ and ®®M the subscripts 1|2
and 2|1 since the contributions are equal.

From Egs. (4) and (5), the first-order density expansion
of ®(a,p) is given by

Pla,p)=1—(1—a)mp+ --- . (14)

From Eq. (10), the direct-deposition contribution can be
expressed at second order as
J

p—p*|m—(2—a)cos™! —-2—

ifrp,>2.

®PP(1,2;a,p)=
p"pz‘n‘+ .

Note that the piecewise function PP’

tri T4

®PP(1,2;a,p)

=p+p* [d3 £

(1+f23)+%8(r23—1) +oe,

(15)

where we have dropped the factor (1+ f,) which is equal
to H(r; —1) in Eq. (11). After some algebra, one obtains

2 172

v .
+ - if15r,<2,

(16)

(1,2;a,p) is continuous at r, =2.

As ®®M)(g p) is the sum of contributions due to the adsorption of particle 3 at contact with particle 1 with and
without contacting particle 2, the latter itself being in contact with particle 1, one obtains that

O RM(a,p)=1[p® PP (r;,=1;a,p)]+ [d38(r;;— D)[p8,y(r33a,p=0)Is(rp=1r3=1r5)+ -+, (17)

where s(r;, =1,r;3=1,r,;) denotes the area of the trian-
gle formed by particles 1, 2, and 3, such that any trial
particle landing in this triangle follows a steepest descent
path which leads to the point r,. This area can expressed
as

2, 172

4

r
s(rip,=1Lr3=1ry)= % (18)

Combining Egs. (17) and (18), it is possible to perform in-
tegrations, which gives

®EM(g,p)=p |1 +p (l—a)%
+l/-3(2a—1 (19)

Let us now consider the adsorption events in which a
trial particle can reach the surface in r, after rolling over
particle 3 without contacting particle 1; ®*M)(1,2;a,p) is
given by

®EM(1,2;a,p)=1p? [ d38(r;—1
ng(r23;a,p=0)+ Tt (20)

After performing the integration, one obtains to the
second order in density

O RM(1,2;a,p)

1| T2 a 1
p |m—cos T | TS 172
2 P2
rp |1——=
— 12 4
if 15r,<2, 21
p’m ifrp>2.

Hence, collecting the results of Egs. (16) and (21), the
pair-distribution function g,(r,;a,p) to order p is a

[
piecewise function, such that, if 1 =r,, <2,

y2(r12;a’p) 1+2P 2(1"‘(1)008 —2—
172
—r l—r—%2
12 2
2
1
+<- 7|, (22
2 rh
ry |1— 4
whereas if |, > 2,
yalria,p)=1. 23)

The singular part of the pair-distribution function is
given by

449, 1—a )—+ﬁ(2a—1)] (24)

82+ (a,p)= 2 3

3 4

Note that we recover the results already derived for two
limiting cases: RSA (a=0) [21] and simple BD (a=1)
[16].

We focus now on the density expansion of the rate of
deposition ®(a,p). It is possible to simplify the calcula-
tion by rearranging the terms of the expansion as

P(a,p)=(1—a)P(a=0,p)
+(1—a)[®PP(a,p)—P(a=0,p)]
+a(1—Y¥(a,p)), (25)

where ®(a=0,p)=®PP(a=0,p) is the RSA available
surface function. The third-order density expansion of
®(a =0,p) has been already derived [21] and recently the
fourth-order has been also obtained [22]. Using Egs. (5)
and (6), we can rewrite Eq. (25) as
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2
®(a,p)—(1—a)(a=0,p)=a+(1—a )BZ— [ [d2d3 1,150 (2,3;0)—g(2,3;0))

+02 |[U52 [ [ [a2d3d4f0f uf w(8(2,3,40) ¢ (2,3,40))

1—a)
+1T"f Jd2d3f,f15(88"(2,3;a)—g4"(2,3;0))

—%fffd2d3d4g(3°)(2,3,4;a)

where g{P(2,3,...,s+1;0) denotes the pth-order
coefficient of the density expansion of the s-particle distri-
bution function.

The expansion of ®(a,p) up to third order involves the
pair-distribution function up to first order and the
triplet-distribution function to the zeroth order. It is pos-
sible to generalize the arguments that enabled the calcu-
lation of the pair-distribution function to higher-order
distribution functions. Thus, the triplet-distribution
function is given by

9p°g;(1,2,3;a,p)
ap

=[¢'213(1,2,3;a,p)+®"'%(1,2,3;a,p)

23101 9. 1

+@~'(1,2;a,p)] Ba,p) ’ 27)

where @'23( 1,2,3;a,p) is the probability density of
finding two particles at the locations r; and r, and a cavi-
ty at r; such that a particle center can be added at the
point r; either by direct deposition [®'2*PP)(1,2,3:4,p)]
or by rolling mechanism [¢12'3(RM)(1,2,3;a,p)]. To the
]

H(rn—l)H(r,3—1)H(r23—1)

2
®'123(1,2,3;a,p)= +8(r = D[8(r 3= DH(r3 = D+ H(ry3 = 18(ry; = )]

+§[a(r12—1)H(r,3—1)H(r23—

2
+ 3%68(,12 —1)8(r 3 — 1)8(rp; —

A(2,3,4)

S +'." (26)

lowest order, the triplet-point-distribution function is
equal to

gi9(1,2,3;a0)=1[@?1?3(1,2,3;0)
+@@112(1,2,3:9)
+0@21(1 2 3:4)], (28)

where the superscript (2) in ® indicates the second order
in the density expansion.

To obtain ®?'213(1,2,3;4,p), we have to consider the
different possibilities for adding a new particle at the lo-
cation r; for a given pair of preadsorbed particles cen-
tered at r; and r,: if the two already adsorbed particles
are not in contact, |r,—r,|> 1, the third particle can be
inserted either by direct deposition, i.e., without contact
with particle 1 or particle 2, or by rolling over particle 1
or particle 2, or both; if the two already adsorbed parti-
cles are in contact |r,—r,;| =1, particle 3 can be adsorbed
according to the four previous possibilities, and we derive
the following expression, at the lowest order in density:

1)
+H(r,—18(r;— DH(ryy — 1)+ H(ry — DH(r;; — 1)8(ry; —1)]

(29)

+%sin2[ac(r12 JIH(r, —1)8(r3; —1)8(ry; —1)

1,

where a.(r;)=alr,,r;3=ry;=1) is the angle between r;; and r;, when r;;=r,;=1and 1<r;, <2, and a,(r,)=0 if
r1, = 2. Using Egs. (11) and (22)-(24), the p? term of Eq. (26) can be rewritten

(—a)? s [ [ [d1d2d3f,,f138(r—1)
or

2(ry3)
S

2
(1—a)a£’4— [ drydry,—1)

’

(30)

(31)

where 2(r) is the area of the intersection between the exclusion disks of two particles whose centers are separated by a
distance r (see Appendix A). A simple calculation gives that, for r=1, 3(1)=2(7/3—V'3/4), and Eq. (31) is equal to
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(32)

Details of the calculation for the p* term of Eq. (26) are given in Appendixes B and C. Finally, collecting all terms of
the expansion and introducing the coverage 6=p/m /4 [we redefine accordingly the unit of time by multiplying by 7 /4

such that d6/dt =®(a, )], one obtains

e _
®(a,00=1+4a— 10+ |83 4o |10 _1OV3 |, o] 16, V3 |1
T 3 3 T

40v3 176 376 488V3 | 1834 .| 920 | 532v3 228

+ - TR +a? |- — ==

3r 32 27 97 972 27 97 e
+a3 ﬁg__ZOO_\G_’_E,i B+ --- (33)

27 977 7)'2

One can easily check that for a =1 (simple BD) the first-
and second-order terms of the expansion vanish, express-
ing the impossibility of rejecting a particle when a parti-
cle touches only two particles before reaching the surface.
The 6° term for a =1 is slightly different from that given
by Thompson and Glandt [16]: the numerical value is
—9.949 78 —instead of —9.61205. This discrepancy re-
sults from a mistake made by Thompson and Glandt in
handling the triplet-distribution function. A comparison
between the low-coverage expansion and computer simu-
lation is presented in Sec. IV.

III. ASYMPTOTIC KINETICS

An examination of the configurations of adsorbed
spheres near the saturation coverage shows that the sur-
face available for adding new particles is made of small
isolated targets, in which only a particle can be placed.
In RSA (@ =0), each target can be characterized by one
single-length scale parameter h [23,24]; this assumption,
which leads to a power-law asymptotic behavior that is
well supported by the simulations results [25-27], is
closely related to the fact that the minimum area of a tar-
get (which is zero in continuum RSA) is reached when A
goes to zero, whatever the detailed configuration of the
surrounding spheres.

For the ballistic deposition model, an adsorption event
can occur either by direct deposition or by rolling motion
on the preadsorbed particles. Because of the latter possi-
bility, the smallest target areas are never equal to zero
(when a >0), which leads, as shown below, to an ex-
ponential asymptotic behavior. For times long enough,
the direct deposition becomes marginal (the case a =0 is
not considered in the following) and the relevant target
area is that of the surface determined by the centers of
the preadsorbed spheres over which the trial sphere may
roll to reach the adsorbing surface. Targets can be
classified according to the number of such preadsorbed
spheres. But contrary to a RSA process, next-
neighboring spheres can be involved in an adsorption

event. Figure 2 displays some typical targets. Indeed, a
target defined by n preadsorbed spheres must be sur-
rounded by “stable” positions corresponding to (poten-
tial) second-layer formation; otherwise, more preadsorbed
spheres would be involved in the definition of the target:
the surface is a convex polygon in which any landing trial
particle will eventually be adsorbed.

It is important to note that there is a finite difference
between the smallest area of a target defined by three
spheres and that of a target defined by four spheres; this
is of course also true for targets defined by even more
preadsorbed spheres. The smallest target defined by
three spheres is equal to S3,, =V'3/2 whereas the small-
est target defined by four spheres is equal to
S4m=3V3/4. As a result, the asymptotic behavior is
only determined, as far the leading term is concerned, by
the filling of the triangular targets. Characterizing the
targets by the area relative to the minimum value
s=8—38,,,, the density n(s,t) of such targets evolves in
the asymptotic regime ¢ > ¢, according to

i1—n(s,t)=—ai(S3m +s)n(s,t), (34)
dt T

where one neglects the filling by direct deposition. The
factor 4/m comes from the new definition of the unit of
time introduced in the preceding section. Integrating Eq.
(34) gives

—a4/mSy,, +s)Nt—1t.)

n(s,t)=nls,t.)e (35)

The asymptotic behavior of the coverage is obtained by
considering all targets and this yields

T 5 —a4/m(S;,, +s)it
6la, ) —0(a,t)= [ “dsn(s,z,)e .

t—+ow , (36)
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where s, is an irrelevant upper cutoff.
When s —0, we assume an analytical expansion of the
density of targets,

dn

n(s,t,)=n(0,t,)+ ds

s+ 37
s=0

When s=0, it is impossible to find a stable position on
the other side of the longest segment of the triangle, and
the target is no longer defined by only three adsorbed
spheres, but at least four [17]. As a consequence, the
density of targets vanishes when s goes to zero:
n(0,t,)=0. As s and n(s,t,) are positive numbers,
(dn /ds ), — is also positive; assuming in addition that the
derivative is different from zero, the asymptotic behavior
is given by

’stable position’ 'stable position’

—a4/m(Sy,, +5)t

0la, o) —6(a,1)~ [ “ds se (38)

Taking the limit of large upper cutoff, we integrate the
above equation, which leads to

—ad/mSy,,t e_a2‘/3/m

6(a, o )—0(a,t)~<

~ 39
a?t? a’t? (39)

As previously mentioned, the fact that the minimum tar-
get area is nonzero leads indeed to an exponential ap-
proach towards the jamming limit for a >0, whereas in
RSA (@ =0) the approach is algebraic. By refining previ-
ous arguments, we now show that the discontinuity when

'stable position’

(b)

FIG. 2. Available surface area in the asymptotic regime: representative targets defined by (a) three preadsorbed spheres (hatched
disks) and (b) four preadsorbed spheres (hatched disks). The target area is delimited by the thick lines and the dashed circles indicate
the incoming sphere. (c) Geometry of the smallest targets. The minimum area is obtained for » =x =y =0. The dashed circle corre-

sponds to the largest disk that could be inserted. For small values of the parameters, the available area is
$;=(V3/2)+1/2vVh+y +(V3/12)x + - -+ .
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a —0 is only apparent, and that successive asymptotic re-
gimes appear in this limit.

In the remainder of the section, we consider the case
when a becomes very small. In this situation, the targets
that remain at long times need to be characterized by
more than the surface area available for insertion of a
new sphere by rolling. One must also consider the length
scale h that can be defined as the difference between the
diameter of the largest disk that could be inserted in the
target and the diameter of the actual spheres: 4 is the
relevant parameter for describing insertion of a new

]

T ke {x},
6(a, ) e(a,t)_4f0 dhf0 dix}n({x},h,t,)e

The targets can now be divided into three classes: those
that are predominantly destroyed by direct deposition,
those that are predominantly destroyed by rolling mecha-
nism, and those for which the two mechanisms have com-
parable contributions. Since S({x},h) is always larger
than S5, =V'3/2, the first class is characterized by
h >>V'a. Notice also that the destruction of a target by
rolling mechanism becomes effective only for times of the
order 1/a or larger. For t, <<t <<1/a, the targets with
h <V'a are almost unaffected, whereas the targets with
h >V'a vanish because of direct deposition, just like in
RSA. As a result,

K (a)
Vi

where K(a) goes to a nonzero limit and K'(a) goes to
zero when @ —0. For ¢ larger than 1/a, the rolling mech-
anism becomes more and more efficient and, again by vir-
tue of the finite, nonvanishing value of S, the kinetics
crosses over to an exponential behavior. However, one
does not immediately recover the asymptotic behavior
given by Eq. (39). The first reason is that it may take
some time for the deposition process by rolling to fill the
largest targets first so that the remaining targets are
predominantly defined by three preadsorbed spheres (this
is expected to be true for ¢ >>1/a); but, in addition, when
a becomes very small there may still be a competition be-
tween filling by direct deposition and filling by rolling
mechanism, even for h <V'a. Consider for instance tar-
gets defined by three preadsorbed spheres. Then the rate
of destruction can be written as a(S;, +s({x},h))
+C({x})h? and it is only for s({x},h)>>C({x})h? that
one recovers the previously derived behavior, Eq. (39).
By considering the geometry of the smallest targets [see
Fig. 2(c)] and averaging over nonrelevant parameters, a
crude estimate gives s({x},h)~V'h, which implies that
the rolling mechanism only dominates when s <<al”.
The corresponding crossover time is obtained for ast ~1
when s ~a'”3, i.e., t ~a ~*/3, so that one finally has

6(a, o )—06(a,t)~

+K'(a) ift, <<t <<1/a , (41)

fl\/3/1rat
0(a, o )—0(a,t)~K"< L t>>1/a%3,  (42)

(at)?

—(4/mNaS({x},h)+(1—a)C({xDh )
b

sphere by direct deposition.

The rate at which a target characterized by 4 and a set
of (unspecified) parameters {x} (including, e.g., the num-
bers of preadsorbed spheres required to define the po-
lygon available for deposition by rolling mechanism) van-
ishes is then equal to 4/7(aS({x},h)+(1—a)C({x})h>
+0(h?)), where S is the area of the polygon available for
deposition by rolling and C({x})h? is the area of the
small surface available for direct deposition. Then, the
approach to saturation is described by a generalization of
Eq. (36) for a << 1:

t>>1, . (40)

where K’ is a function of a. The asymptotic kinetics
when a << 1 are thus characterized by three successive re-
gimes and when a —0 the last two of these shrink and
start an infinitely long times so that only the RSA-like
behavior survives.

IV. SIMULATION RESULTS AND DISCUSSION

In the simulations, spheres of diameter ¢ are incident
on a square cell of side L. Periodic boundary conditions
were employed to eliminate edge effects. The size of the
system is specified by the cross-sectional area of one
sphere relative to the cell area, r, =xn02/4L% The simu-
lations performed to investigate the asymptotic kinetics
used a value of 1072 for this parameter and between 200
and 700 independent runs. The short-time behavior was
studied with more independent runs, i.e., 50000 runs. If
N denotes the number of adsorbed particles, the coverage
is defined as #=Nmo?/4L?. One simulation consists of a
(large) number of attempts to add particles to the surface.
At each attempt, the algorithm proceeds as follows. First
a trial position within the cell is generated using a uni-
form random number generator. A check for overlap be-
tween the projection of the spheres in the plane, taking
proper account of the periodic boundary conditions, is
then performed. If no overlap is detected, a uniform ran-
dom number, £, is generated on the interval [0,1]. If
& <p, the trial position is accepted, otherwise it is reject-
ed. This procedure amounts to accepting the directly de-
posited particle with probability p. If overlap is detected
in the initial position, the rolling mechanism is initiated.
Physically, this corresponds to following the path of
steepest descent of the incoming sphere over those that
are already adsorbed. Computationally, this calculation
is very time consuming but fortunately it may be replaced
by a sequence of restructured positions of the projection
of the sphere in the plane. In this way, the three-
dimensional process is mapped to a two-dimensional one.
Full details are given elsewhere [16,17]. If, after any dis-
placement in the restructuring sequence, no overlap re-
sults, the sphere has reached the surface. If overlap is
still detected after the fourth displacement, the sphere
has failed to reach the surface and is rejected. If the
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sphere does reach the surface via the rolling mechanism,
it is accepted with probability p’=1—p in the manner de-
scribed above (without loss of generality, we have chosen
p and p’ such that p+p’'=1). In practice, this calcula-
tion is performed first; the rolling sequence is computed
only if the final position would be accepted. A flow dia-
gram is shown in Fig. 3. If N, attempts have been made,
the elapsed time is defined as t =pN,mo? /4L>.

In order to verify our result for the coefficient of 8° in
the case a=1, we have plotted the function
Y=4(t —6(t))/t*, which is related to the number of un-
successful trials, in Fig. 4. Although large fluctuations
are apparent for the shortest times, where almost all of
the attempts are successful, a distinct linear region is ap-
parent for larger times. The intercept and slope of this
line are equal to the t* coefficient and 2 of the t
coefficient of —®(a=1,1), respectively. From a least-
squares fit of the simulation data, we obtain an intercept
of 9.9+0.1 and a slope of —10.51+0.2. The correspond-
ing values of the 83 and 6* coefficients of ®(a=1,0) are
thus —9.940.1 and 13.210.2, respectively. The former
agrees more closely with our theoretical value of
—9.949 78 than with the value quoted by Thompson and
Glandt [16], —9.61205. . . .

In Fig. 5 we show the simulated rate of deposition
®(a,0) together with the low-coverage expansion, Eq.
(33), to order 6°. For a =0, the low-coverage expansion
accounts for most of the behavior of ®, but the agree-
ment deteriorates with increasing a. For @21, it ac-
counts only for the early part of the curve (6<0.15).
Note that for @ > 1, ® is not a monotonically decreasing
function of 6, but passes through a maximum that has a
larger value than 1. This behavior is due to the choice of
time units (in units kp, ® is not the probability of ad-
sorption and therefore may be larger than 1), and the
maximum is physically related to the increasing efficiency
of the rolling mechanism [see Eq. (2)]. The rate of ad-
sorption via rolling initially increases with coverage, and
when a is larger than 1 this effect dominates the decrease

( set rolling probability, p’ ]

|

{ new position ]-

FIG. 3. Flow chart of the simulation algorithm.
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FIG. 4. Plot of Y(t)=4(t—6(t))/t* versus ¢ at short times
for a=1 (simple BD). The dashed line is a least-squares fit of
the simulation data for ¢ >0.03. The slope and intercept of this
line are —10.5+£0.2 and 9.910.1, respectively. The latter,
which is minus the 6° coefficient of ®(a=1,0), agrees more
closely with our theoretical estimate (shown as a short, continu-
ous horizontal line) than with that of Thompson and Glandt
(short, dashed horizontal line) (see text).

of the available surface for direct deposition due to ex-
clusion effects.

For the simple ballistic deposition model, see Ref. [17],
we plotted different functions to check the validity of the
predicted asymptotic behavior with exponents 2V3 /7
(exponential) and —2 (power law) for a =1. In the previ-
ous section, we have shown that, for this generalized
ballistic deposition model, the final regime of the asymp-

o[ T T
— Eqn.(33)
....... Simulation
1.5 B
3?_ .......................
3 Lo .
Y
0.5 -
0.0 R
0.0 0.2 0.4 0.6 0.8
7}
FIG. 5. Rate of deposition P(a,0) versus 6 for

a=0,0.1,0.3,0.5,0.8,1.0,1.5,3.0 (from bottom to top on the
left-hand side). The continuous lines correspond to the low-
coverage expansion [Eq. (33)] and the dashed lines are the com-
puter simulation values.
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FIG. 6. Asymptotic kinetics: the residual function
R(a,t)=In[(6(a, » )—6O(a,t))exp(2V3/mat)(at)*] minus its
plateau value R(a,») is plotted versus at for
a=0.5,0.8,1.0,1.5,3.0. The plateau values are given in Table L.

totic kinetics is given by a simple scaling form, Eq. (39),
with, however, an amplitude that depends on a [see Eq.
(42)]. We thus show a master plot of the asymptotic
kinetics for various values of @ (0.5, 0.8, 1.0, 1.5, 3.0). We
introduce the residual function R(a,?)=In[(6(a, x)
—6(a,t))exp(2V'3/mat)(at)?], and the difference
R(a,t)—R(a,») is plotted versus at in Fig. 6. The
curves all go to zero for at >4, confirming Eq. (39). The
plateau values, R(a, ), for different a’s are presented in
Table I. As in the (1+ 1)-dimensional model [18], the pla-
teau value is a function of a, but the dependence cannot
be derived by simple analytical arguments. It requires
detailed information on the structure of the targets close
to the saturation state (compare, e.g., with Eq. (42),
R(a,©)=In[K"(a)]). The trend that seems to be
satisfied is that the contribution of the last asymptotic re-
gime decreases when a decreases.

In Fig. 7, we display the time dependence of the cover-
age for several values of a. For increasing a’s one ob-
serves that the saturation coverage increases (see also
Table II) and is reached more rapidly.

With low- and high-coverage regimes in hand, it is use-
ful to combine them to provide an approximate descrip-
tion of the kinetics over the entire range and to predict
the saturation coverage. Many authors [27-30] have
proposed such treatment for RSA kinetics. The predict-
ed jamming limit for disks, 0.553, compares well with the
value from simulation, 0.547 [28]. The corresponding

TABLE 1. Plateau value, R (a, ), of the residual function.

a R(a, )
0.5 —3.43
0.8 —3.25
1.0 —3.18
1.5 —3.02
3.0 —2.75

1.0 T T T

0.8 4

06’“

0(a,t)

0.0 L ! .
0 1 2 3 4
t

FIG. 7. Coverage 6(a,f) as a function of time for
a=0,0.1,0.3,0.5,0.8,1.0,1.5,3.0 (from bottom to top).

values for the addition of hard spheres to a volume are
0.365 (estimate) and 0.382 (simulation) [27]. Dickman,
Wang, and Jensen [30] used the low-coverage series in
time in conjunction with the asymptotic power law for
disks to construct Padé approximants which yielded an
excellent prediction of the jamming limit (0.547 88). Un-
fortunately, as already shown for the simple ballistic
deposition model [17], none of these procedures provides
a good estimate for the ballistic deposition saturation
coverage. Using the low-coverage expansion up to 8° and
the asymptotic expression, the method of Dickman,
Wang, and Jensen gives a saturation coverage of 0.9 for
a=1 (instead of 0.61) and similarly poor estimates for
other values of a. The reason for this poor performance
is likely due to the fact that both the low- and high-
coverage expressions have a limited range of validity. To
illustrate this point, we have used for a =1 the additional
6* coefficient of the coverage expansion of @ estimated
from the least-squares fit in Fig. 3. The best results from
the interpolants suggested in Ref. 17 and from those of
Dickman, Wang, and Jensen are 0.65 and 0.70, respec-

TABLE II. Saturation coverage 6(a, «) for different values
of a. The standard deviation over all runs is equal to 0.006.

a Oa, o)
0 0.547
0.1 0.5682
0.3 0.5866
0.5 0.5964
0.8 0.6059
1.0 0.6105
1.3 0.6157
1.5 0.6191
2.0 0.6245
2.5 0.6286
3.0 0.6323
4.0 0.6374

5.0 0.6413
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FIG. 8. Saturation coverage as a function of a (crosses).
Comparison with a Palasti-like formula (continuous line).

tively, and are indeed closer to the numerical value.

Since we have obtained analytically the exact solution
of the generalized ballistic deposition process on a line
[18], it is interesting to try a Palasti-like approximation
[31-33] in which a simple estimate for the saturation
coverage on a plane [(2+ 1)-dimensional system] is pro-
vided by the square of the value on a line [(1+1)-
dimensional process):

0, ,(a;0)=(0,,,(a;0))*. (43)

The results of this approximation, which we stress have
no sound theoretical basis when applied to the present
problem, are shown in Fig. 8. The approximation is very
good for RSA (a =0), 0.558 instead of 0.547, but its quali-
ty decreases as a increases. For example, for a =1 it
gives 107% of the exact result and for a=3, 114%.
Overall, the Palasti construction predicts the correct
trend with increasing a, but, of course, it predicts a max-
imum value of 1, which is physically unrealistic. The ac-
tual value should be less than the coverage at random
close packing, 0.82 [34].

V. CONCLUSION

In this paper, we have investigated an irreversible-
deposition model that generalizes both random sequential
adsorption and ballistic-deposition models by including
restructuring effects. Monolayer formation is controlled
by one parameter that sets the relative rate of the two
mechanisms of deposition, i.e., direct deposition and the
rolling mechanism. By means of liquid-state methods,
the third-order density expansions for the pair-density
function and for the rate of deposition have been ob-
tained, which provides an exact description of the kinet-
ics and the structure at short times. An analytical ex-

pression for the asymptotic kinetics has been also de-
rived. The computer simulations show a good agreement
with the predicted results. Although the results present-
ed in this paper apply for any value of a, they are most
useful for ¢ not much larger than 1. For a~3, a per-
colating structure is observed. The structural properties
are therefore significantly different and the model is best
analyzed using other approaches, e.g., percolation theory.
A detailed investigation of the nature of the percolation
transition is under way.
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APPENDIX A

We have to calculate integrals like

1= [ [d2d3f,,f15G(2,3), (A1)

where G(2,3) only depends upon the relative distance
r,;. Using the property of uniformity, the above integral
can be rewritten as

I=éfffd1d2d3f,2f136(2,3), (A2)

where S is the total area of the system. We now intro-
duce the function 2(r,;) such that

2"("23)=fd1f12f13 . (A3)

FIG. 9. Intersection of the exclusion disks of two particles
whose centers are separated by a distance r.
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The function Z(r) has a simple geometrical interpreta-  where a(r) is the angle between ry, and r,;. Changing the
tion: it is the area of intersection between the exclusion  variables from (r,,r;) to (r,,r=r,—13), Eq. (A2) becomes
disks of two particles whose centers are separated by a

distance r (see Fig. 9). An elementary calculation gives I= 1 f dr2(r)G(r)
_ _ sin(2a(r))
=2 |a(n— =520 (A4) zz—;r—fdrrZ(r)G(r) . (AS5)

APPENDIX B: CALCULATION OF THE p? TERM OF EQ. (26)

The third-order term of the expansion of ®(a,p)—(1—a)®(a =0,p) is the sum of the two following contributions:

3

Hap)=(1=a)E [ [ [d2d3d4f1f 13/ 14(81(2,3,4:0)— 1 (2,3,4;0)) (B1)
and

Hapr==2p [ [ [a2a3a4 422 0003,450) . B2)
We introduce the function 2(2,3,4)= — f d1 f,f 13/ 14> Which represents the area of the intersection between the ex-

clusion disks around particles whose centers are located in r,,r3,1, (see Fig. 10). By using Eq. (28), introducing the cov-
erage 6=1/4p, and relabeling the integration variables, one then obtains

3
Ha,0)=—(1=a) 225 [ [ [d1d23(®>23(1,2,35a) - ®224(1,2,3,0)]5(1,2,3) (B3)

Considerations of symmetry lead us to choose r;, =1 and - , 1/2
. . _ _ _ 7 V3 1 ls s s
to use as variables either (s =r;, t=ry;) or =r;,a),a 2(l,s,a)=—————+cos” ' |= |—= [1—=
being the angle between r;, and r,;. By means of those 6 4 2 2 4
variables, the function 2(1,2,3) can be expressed as fol- , |12
lows (35]: for 1<s<V2+V3 and for +eos ML= 1L + 3 sin(a) ,
0s H(1/(2s) Sa<m/3+cos (s /2), 2] 2 4 2

(B4)

t and a being related by t=V1+s°—2scosa.
For 1<s<Vv3 and for [w/3+cos s5/2)]Za
<cos [(s2—3)/(2s)],
12
2

S(1,5,a)=2cos" ! é . (BS)

Combining Egs. (29), (B3), (B4), and (BS5), the following
expression for J(a,0) is obtained after some algebraic

manipulations:
g3 128
J(a,0)= ——U—a){I +I +I +T 0,
7T
where (B6)

I, =3 f\/2+\/§ds s frr/3+cos_l(2s)da 2(1,s,a)

cos_l[l/(2s)] S

+ f d fcos “lst=3/201 2(1,s,a) ,
7/3+cos™ 1(2s) S
FIG. 10. Intersection of the exclusion disks of three particles

centered in 1,2,3. (B7)
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a t 3(1,s,t) __ 326
a LALE B8 Ha,0)=—a
2 f sina(l,s,t) S (B8) 37
=%f di tsina( 1,5, 22 (B9) x [ [ [d1d2a300131,2,3,0 4023
I 3q? 2(1,1,1) (B15)
+++ 8V3 S . (B10) A(1,2,3) is the area of the triangle formed by the centers
) ) ] of particles 1, 2, and 3 such that every particle center
Performing all integrations leads to landing above this triangle reaches a stable elevated posi-
2 V3 tion (corresponding to a second layer); consequently, this
I,=a|——— 3w — 4+, (B11)  triangle is not obtuse and its circumradius 7, is less than
12 16 the diameter of a sphere. Then, A4(1,2,3) is equal to
for a<7/2 and r,=r,;/sina <1 where one
Vi zero, except =T
" =a? % %w (B12)  has
A(1,2,3)=1rppr 5 . (B16)
" 1n* _ Vi3n - '
1o =a| T e B, (B13)  Using Eqgs. (29) and (B4), &(a, 6) can be rewritten as
i #a,0)=— 3128 [J+J+ S AT S o SRS N
a —
= — V — .
I, . 16(17' 3—3) (B14) (B17)
We now proceed to a similar treatment for #(a,0): where
J
V2 Via—r? T/2
J=3 drr? dss? i
rr fr s s fcos_][r/(ZS)]da sin(a)
V2 Va4+Vi4—,? cos " H[sr=V (4~ r2)4—s2)]/4}
+ drr? 52 ;
fl rr fr f s~ 1(r/(2s)) dasin(a)
V3 V24Via—y? cos " H{[sr—V/(4—r2)(4—52)]/4}
+ | _drr? 52 i
f rr f fcos 1[r/(25) da sin(a) ’
\/3ﬂ'
64 32 24 ’ (B18)
3 V3 /2 2+\/3 cos (s /4—V 3(4—52)/4)
J,==a ds s d + .
+=5 { 1 s fcos“[l/(zs) a sina f f 101 /250, dasma] ,
_ 19 Vin
I BT T (B19)
! =a—2fﬂ dasina
T+ 4 w/3 ’
_a’
" _— m 3
++_4f,, dasin’a ,
_1la
96 (B21)
3a® 2, 8(z—1)
J —-_— _ 7
+++ T e dtt ) ,
_ 3q?
=32, (B22)

Combining Egs. (B6), (B11)-(B14), (B17)-(B22), and previously obtained results for RSA [21] leads to the 63 term of

Eq. (33).



3252 G. TARJUS, P. VIOT, H. S. CHOI, AND J. TALBOT 49

[1]J. Feder, J. Theor. Biol. 87, 237 (1980).
[2]J. Feder and I. Giaever, J. Colloid Interface Sci. 78, 144
(1980).
[3] A. Schmitt, R. Varoqui, S. Uniyal, J. L. Brash, and C.
Pusiner, J. Colloid Interface Sci. 92, 25 (1983).
[4] G. Y. Onoda and E. G. Liniger, Phys. Rev. A 33, 715
(1986).
[5] Z. Adamczyk, M. Zembala, B. Siwek, and P. Warszynski,
J. Colloid Interface Sci. 140, 123 (1990).
[6] J. Ramsden, Phys. Rev. Lett. 71, 295 (1993).
[7] For a comprehensive review, see J. W. Evans, Rev. Mod.
Phys. 65, 1281 (1993).
[8] P. Schaaf, A. Johner, and J. Talbot, Phys. Rev. Lett. 66,
1603 (1991).
[9] B. Senger, J.-C. Voegel, P. Schaaf, A. Johner, A. Schmitt,
and J. Talbot, Phys. Rev. A 44, 6926 (1991).
[10] B. Senger, P. Schaaf, J.-C Voegel, A. Johner, A. Schmitt,
and J. Talbot, J. Chem. Phys. 97, 3813 (1992).
[11] B. Senger, F. J. Bafaluy, P. Schaaf, A. Schmitt, and J.-C.
Voegel, Proc. Natl. Acad. Sci. U.S.A. 89, 9449 (1992).
[12] G. Tarjus and P. Viot, Phys. Rev. Lett. 68, 2354 (1992).
[13] P. Wojtaszczyk, P. Schaaf, and B. Senger (unpublished).
[14] J. Talbot and S. Ricci, Phys. Rev. Lett. 68, 958 (1992).
[15] R. Jullien and P. Meakin, J. Phys. A 25, L189 (1992).
[16] A. P. Thompson and E. D. Glandt, Phys. Rev. A 46, 4639
(1992).
[17] H. S. Choi, J. Talbot, G. Tarjus, and P. Viot, J. Chem.
Phys. 97, 4256 (1993).
[18] P. Viot, G. Tarjus, and J. Talbot, Phys. Rev. E 48, 480

(1993).

[19] G. Tarjus, P. Schaaf, and J. Talbot, J. Stat. Phys. 63, 167
(1991).

[20]J. A. Given and G. R. Stell, in Proceedings of the XVIth
International Workshop on Condensed-Matter Theories,
June 1992 (Plenum, New York, 1993).

[21] P. Schaaf and J. Talbot, Phys. Rev. Lett. 62, 175 (1989).

[22] J. A. Given, Phys. Rev. A 45, 816 (1992).

[23] Y. Pomeau, J. Phys. A 13, L193 (1980).

[24] R. H. Swendsen, Phys. Rev. A 24, 504 (1981).

[25] E. L. Hinrichsen, J. Feder, and T. Jdssang, J. Stat. Phys.
44, 793 (1986).

[26] D. W. Cooper, Phys. Rev. A 38, 522 (1988).

[27] J. Talbot, P. Schaaf, and G. Tarjus, Mol. Phys. 72, 1397
(1991).

[28] J. W. Evans, Phys. Rev. Lett. 62, 2642 (1989).

[29] S. Ricci, J. Talbot, G. Tarjus, and P. Viot, J. Chem. Phys.
97, 5217 (1992).

[30] R. Dickman, J. Wang, and I. Jensen, J. Chem. Phys. 94,
8252 (1991).

[31] I. Palasti, Publ. Math. Hung. Acad. Sci. 5, 353 (1960).

[32] B. J. Brosilow, R. M. Ziff, and R. D. Vigil, Phys. Rev. A
43, 631 (1991).

[33] B. Bonnier, M. Hontebeyrie, and C. Meyers, Physica A
198, 7 (1993).

[34] D. Bideau, A. Gervois, L. Oger, and J. P. Troadec, J.
Phys. (Paris) 47, 1697 (1986).

[35] P. C. Hemmer, J. Chem. Phys. 42, 1116 (1963).



